Proton NMR Spectroscopy

Introduction to ¹H NMR

nuclear magnetic resonance (NMR) is a spectroscopy technique which is on the absorption of EMR from the radiofrequency region 4 to 900 MHz by nuclei of the atom.

Two types:

¹H-NMR (proton nuclear magnetic resonance) Gives information about the number and type of (Hatoms) in the molecule e.g. CH_3CH_2OH contain 3 types of (H-atoms) and they are adjacent to each other and their ratio 3:2:1 ¹³C-NMR

Introduction to ¹H NMR

proton nuclear magnetic resonance spectroscopy is one of

the most powerful tools for elucidating the number of

hydrogen or proton in the compound.

N.B.

mass number (M) is the total number of protons and neutrons)
Atomic number is the number of electrons and gives
information about the reactivity of atom
<u>Spin Quantum number (I):</u>
It is the spin which created in atoms or molecules due to
continuous movement of electrons and neutrons.

Which nuclei have a "spin"?

• If mass # and atomic # are both even, I = 0 and the nucleus has **no spin**.

e.g. Carbon-12, Oxygen-16

- For each nucleus with a spin, the # of allowed spin states can be quantized:
- For a nucleus with I, there are 2I + 1 allowed spin states.

¹H, ¹³C, ¹⁹F, ³¹P all have I = 1/2 $\Delta E = \gamma (h/2\pi)Bo$

Spin states split in the presence of B₀

When a **nucleus** aligned with a **magnetic** field, B_0 , absorbs radiation frequency (Rf), it can change spin orientation to a higher energy spin state. By relaxing back to the parallel (+1/2) spin state, the nucleus is said to be in **resonance**. Hence,

NMR

Presence of Magnetic Field

- Nuclei aligned with the magnetic field are lower in energy than those aligned against the field
- The nuclei aligned with the magnetic field can be flipped to align against it if the right amount of energy is added (DE)
- The amount of energy required depends on the strength of the external magnetic field

Typical 1H NMR Scale is 0-10 ppm

Ppm and taw?

What is the shielding and deshielding?

Shielded proton is

Deshielded proton is

What Does an NMR Spectrum Tell You?

- # of chemically unique H's in the molecule
 <u># of signals</u>
- The types of H's that are present e.g. aromatic, vinyl, aldehyde ... <u>chemical shift</u>
- The number of each chemically unique H integration
- The H's proximity to eachother <u>spin-spin splitting</u>

Information from ¹H-NMR spectra:

- 1. Number of signals: How many different types of hydrogens in the molecule.
- 2. Position of signals (chemical shift): What types of hydrogens.
- **3. Relative areas under signals (integration): How many hydrogens of each type.**
- 4. Splitting pattern: How many neighboring hydrogens.

1. Number of signals: How many different types of hydrogens in the molecule.

Magnetically equivalent hydrogens resonate at the same applied field.

Magnetically equivalent hydrogens are also chemically equivalent.

number of signals?

one

one

CH₃ CH₃

one

two

one

two

CH₃CH₂CH₂-Br

CH₃CHCH₃ CI

three

two

CH₃CHCH₂CH₃ Br

CI-CH₂CH₂CH₂-CI

four

two

three

2. Position of signals (chemical shift): what types of hydrogens.

primary	0.9 pp	m	
secondary	1.3		N
tertiary	1.5		g
aromatic	6-8.5		S b
allyl	1.7		C
benzyl	2.2-3		fi
chlorides	3-4	H-C-Cl	re
bromides	2.5-4	H-C-Br	
iodides	2-4	H-C-I	
alcohols	3.4-4	H-C-O	
alcohols	1-5.5	H-O- (variable	e)

Note: combinations may greatly influence chemical shifts. For example, the benzyl hydrogens in benzyl chloride are shifted to lower field by the chlorine and resonate at 4.5 ppm.

reference compound = tetramethylsilane $(CH_3)_4Si @ 0.0 ppm$

remember: mag

magnetic field →← chemical shift

convention: let most upfield signal = a, next most upfield = b, etc.

... c b a tms

b а CH_3CH_2 -Br

a b c $CH_3CH_2CH_2$ -Br

a b a CH₃CHCH₃ CI

b a b $CI-CH_2CH_2CH_2-CI$

3. Integration (relative areas under each signal): how many hydrogens of each type.

a b c			
CH ₃ CH ₂ CH ₂ Br	a	3H	a:b:c=3:2:2
	b	2H	
	c	2H	
a b a			
CH ₃ CHCH ₃	a	6H	a: b = 6: 1
Cl	b	1H	

integration

a 6 H

a 6H b 4H

a b CH₃CH₂-Br a 3 H b 2 H a b a

CH₃CHCH₃ CI a 6 H b 1 H

Integration: measure the height of each "step" in the integration and then calculate the lowest whole number ratio: $a:b:c = 24 \text{ mm} : 16 \text{ mm} : 32 \text{ mm} = 1.5 : 1.0 : 2.0 \rightarrow 3\text{H} : 2\text{H} : 4\text{H}$

If the formula is known (C_8H_9OF), add up all of the "steps" and divide by the number of hydrogens = (24 + 16 + 32 mm) / 9H = 8.0 mm / Hydrogen. a = 24 mm / 8.0 mm/H \rightarrow 3 H; b = 16 mm/8.0 mm/H \rightarrow 2H; c = 32 mm/8.0 mm/H \rightarrow 4H.

4. Splitting pattern: how many neighboring hydrogens.

In general, n-equivalent neighboring hydrogens will split a 1 H signal into an (n + 1) Pascal pattern.

"neighboring" – no more than three bonds away

n	n + 1	Pascal pattern:	
0	1	1	singlet
1	2	1 1	doublet
2	3	1 2 1	triplet
3	4	1 3 3 1	quartet
4	5	1 4 6 4 1	quintet

note: n must be equivalent neighboring hydrogens to give rise to a Pascal splitting pattern. If the neighbors are not equivalent, then you will see a complex pattern (aka complex multiplet).

note: the alcohol hydrogen –OH usually does not split neighboring hydrogen signals nor is it split. Normally a singlet of integration 1 between 1 - 5.5 ppm (variable).

splitting pattern?

a 12 H singlet

a 12 H singlet

a 6 H singlet

CH₃ H₃C-C-CH₃ Br

a 9H singlet

- a b c CH₃CH₂CH₂-Br
 - a 3 H triplet b 2 H complex
 - c 2 H triplet

- b а CH_3CH_2 -Br
 - a 3H triplet b 2 H quartet
- a b a CH₃CHCH₃ a 6 H doublet b 1 H septet

c 4 H ~singlet

b d c a

b a b CI-CH₂CH₂CH₂-CI

> a 2 H quintet b 4 H triplet

a b c CH₃CH₂-OH

> a 3 H triplet b 2 H quartet c 1 H singlet

Information from ¹H-nmr spectra:

- 1. Number of signals: How many different types of hydrogens in the molecule.
- 2. Position of signals (chemical shift): What types of hydrogens.
- **3. Relative areas under signals (integration): How many hydrogens of each type.**
- 4. Splitting pattern: How many neighboring hydrogens.

 $C_{11}H_{16}$

 $C_4H_8Br_2$

. .

 C_7H_8O

 C_4H_9Br

- a doublet 1.04 ppm 6H
- b complex 1.95 ppm 1H
- c doublet 3.33 ppm 2H

a = two equivalent CH_3 's with one neighboring H (b?) c = CH_2 with one neighbor H (also b)

- a 6H doublet
- b 1H complex
- c 2H doublet

 $C_{10}H_{13}Cl$

- a singlet 1.57 ppm 6H
- b singlet 3.07 ppm 2H
- c singlet 7.27 ppm 5H
- $a = two-equilalent CH_3$'s with no neighbors
- c = monosubstituted benzene ring
- $b = CH_2$

Chemical Equivalence How many signals in ¹H NMR spectrum?

Number of Equivalent Protons

Homotopic H's

- Homotopic Hydrogens
 - Hydrogens are chemically equivalent or homotopic if replacing each one in turn by the same group would lead to an identical compound

Enantiotopic H's

• If replacement of each of two hydrogens by some group leads to enantiomers, those hydrogens are enantiotopic

Diastereotopic H's

• If replacement of each of two hydrogens by some group leads to diastereomers, the hydrogens are diastereotopic

 Diastereotopic hydrogens have different chemical shifts and will give different signals

Vinyl Protons

increasing magnetic field strength $(B_0) \longrightarrow$

The δ Scale

chemical shift, ppm $\delta = \frac{\text{shift downfield from TMS (in Hz)}}{\text{spectrometer frequency (in MHz)}}$

Tetramethylsilane (TMS)

Arbitrarily assigned a chemical shif of δ 0.00

CH₃ | CH₃SiCH₃ | CH₃ TMS

Chemical Shift Ranges, ppm

TABLE 13-3	Typical	Values of	f Chemical Shifts
-------------------	---------	-----------	-------------------

Type of Proton	Approximate δ	Type of Proton	Approximate δ
alkane ($-CH_3$)	0.9	≥c=c<	1.7
alkane ($-CH_2$ -)	1.3	CH ₃	
alkane (CH)	1.4	Ph— <mark>H</mark>	7.2
		Ph—CH ₃	2.3
O II		R—CHO	9–10
$-\mathbf{C}^{H}-\mathbf{C}^{H}$	2.1	R—COOH	10-12
$-C \equiv C - H$	2.5	R—O <mark>H</mark>	variable, about 2–5
$R-CH_2-X$	3-4	Ar—OH	variable, about 4–7
(X = halogen, O)		R—NH ₂	variable, about 1.5–4
≥c=c<	5-6	2	

Note: These values are approximate, as all chemical shifts are affected by neighboring substituents. The numbers given here assume that alkyl groups are the only other substituents present. A more complete table of chemical shifts appears in Appendix 1.
Diamagnetic Anisotropy Shielding and Deshielding

induced field reinforces the external field (deshielding)

Deshielding in Alkenes

NMR spectrum of dimethoxymethane without integral (top) and with integral (bottom) (Figs. 13.2 and 13.3)

FIGURE 8.29

Methyl *t*-butyl ether (MTBE)

Toluene at Higher Field

Integral Trace

Spin-Spin Splitting

Bonded to the same carbon: two bonds between protons

 $\frac{1}{\sqrt{2}}$ spin-spin splitting is normally observed (if nonequivalent)

Bonded to adjacent carbons: three bonds between protons

 $\begin{array}{c|c} & \Pi & \Pi \\ 1 & 3 \\ -C & C \\ -C & C \\ -C & -C \\$

The Doublet in ¹H NMR

H_a is coupled to H_b H_b is parallel or anti-parallel to B

. . H_a splits into a 1:1doublet peak

H_b in 1,1,2-Tribromoethane

The Triplet in ¹H NMR

Ha is coupled to Hb and Hb

H_b can both be parallel, anti-paralle or one parallel and one anti-paralle

. H_a splits into a 1:2:1triplet peak

H_a in 1,1,2-Tribromoethane

1,1,2-Tribromoethane

The Quartet in ¹HMR

1,1-Dichloroethane

Ethyl benzene

CH₃CH₂OCH₃

Equivalent Protons do notCoupleHHHH-C-HCl-C-CHHHHH

Three C–H protons are chemically equivalent; no splitting occurs.

©2004 Thomson - Brooks/Cole

Four C–H protons are chemically equivalent; no splitting occurs.

Pascal's Triangle

Number of equivalent adjacent protons	Type of multiplet observed	Ratio of intensities
0	Singlet	1
1	Doublet	1:1
2	Triplet	1:2:1
3	Quartet	1:3:3:1
4	Quintet	1:4:6:4:1
6	Septet	1:6:15:20:15:6:1

©2004 Thomson - Brooks/Cole

Methyl Isopropyl Ketone

1-Nitropropane

Differentiate using ¹H NMR CH_2 $H_2C - CHCH_2CH_3$ (a) $CH_3CH = CHCH_2CH_3$ and (b) $CH_3CH_2OCH_2CH_3$ CH₃OCH₂CH₂CH₃ and (c) $CH_3COCH_2CH_3$ CH₃CH₂CCH₃ and (d) $H_2C = C(CH_3)\ddot{C}CH_3$ $CH_3CH = CHCCH_3$ and

Coupling Constants (J values)

^aThe value of 7 Hz in an alkyl group is averaged for rapid rotation about the carbon–carbon bond. If rotation is hindered by a ring or bulky groups, other splitting constants may be observed.

Para Nitrotoluene

Bromoethane

Quartet due to coupling with — CH₃

© 2004 Thomson/Brooks Cole

Triplet due to coupling with ---- CH₂Br

para-Methoxypropiophenone

Styrene

H_a splitting in Styrene "Tree" Diagram

C-13 NMR Spectroscopy

C-13 chemical shifts

One signal for each chemically unique carbon

Methyl Propanoate C-13 proton decoupled

@ 2004 Thomson/Brooks Cole

Ethyl Acrylate; C-13 NMR

Coupling in C-13 NMR

the doublet in C-13 NMR

. C splits into a 1:1doublet peak

C splits into a 1:2:1triplet peak

Butanone - Coupled and Decoupled

Coupled C-13 NMR Spectrum

©2004 Thomson - Brooks/Cole

1		
0	1	XYNE

30.542 8033 E820 81

4800

Ò

HC≡=CCH₂CH₂CH₂CH₃

10000 10000 10000

B4.5027

Will.

appropriation of the second of the second of the second se

00 70 60 50 40 30 20 10 рри

SPIROPENTANEACETIC ACID IN CDCL3 FOR PRICE M 6	4. PC MDH 1. 00 000 1. 0000 1. 00000 1. 00000 1. 000000 1. 00000 1. 00000 1. 0000 1.	MSL3638.200 AU: SAVDAT.AU PPG: GATW.PC DATE 13-11-91
CH ₂ CO ₂ H		SF 50.323 01 5351.572 SI 32768 TD 32768 SW 11111.111 HZ/PT .678 RG 20 NE 1 NS 2009
SPA		TE 297 DW 45.0 FW 13400 02 3040.000 DP 25H D0 2.000S D1 4.200U D2 1.000U D3 50.000U D4 1.000U
		U5 1.000U D6 1.000U LB 3.000 GB 0.0 NC 4 CX 20.00 CY 15.00 HZ/CM 490.723 SR 317.71
иниции 180 160 140 120 100 80 30 PPM	40 20 0	

200 180 160 140 120 100 80 60 40 20 0 PPM

0

- C Subtract DEPT-135 from broadband decoupled
- CH DEPT-90
- CH₂ Negative DEPT-135
- CH₃ Subtract DEPT-90 from positive DEPT-135

©2004 Thomson - Brooks/Cole

©2004 Thomson - Brooks/Cole